If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9x^2+30x+40=0
a = -4.9; b = 30; c = +40;
Δ = b2-4ac
Δ = 302-4·(-4.9)·40
Δ = 1684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1684}=\sqrt{4*421}=\sqrt{4}*\sqrt{421}=2\sqrt{421}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{421}}{2*-4.9}=\frac{-30-2\sqrt{421}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{421}}{2*-4.9}=\frac{-30+2\sqrt{421}}{-9.8} $
| 2u-18=u | | 8(a-5)=-48+8a | | 0.5m+6.4=4.9-18 | | 8n-15=25 | | (4z+2)(7-z)=0 | | 21=6-2.2x-2.7x | | 5x+15+2x=4x+9 | | 0.3v=-5 | | 93=4k+13 | | 6y+-11=61 | | 6/7+1/3x=3 | | -5j+-35=65 | | 6x-2(3+3x)=-6 | | 2x-5x-15=-7+3x-26 | | 7(y+5)=133 | | 11+7n=88 | | 5/7+1/3x=4 | | 12(5x-10)=144x | | 10(y)-y=63 | | 3v-43=47 | | 25-1/3b=1/3b+5 | | 3+4k=55 | | 2x+4=11-3x+53 | | 9+12.73x+0.06x=12+13.48x-0.14x | | 4(x+2x)-3x-3=5(24-12 | | 40=0.5(v+2.8)8.5 | | 7(y+11)=133 | | -3c+7=-5 | | 2(3x+3)=6x+9 | | 4(a-4)=8a-(4a-16 | | 6x+7=11x-4 | | -173+5x=61-4x |